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INTRODUCTION 

It is  intended here t o  present some results of our research on optimi- 

zation techniques. E i g h t  known optimum seeking methods are used t o  optimize 

f ive simple two-variable unconstrained functions. Four of the problems are 

presented and analyzed by Witte and Holst 1 and the other one by Beale. 2 

The type  of optimization process reported here is  that of locating a set of 

values of a set  of variables tha t  yields either a minimum or a maximum 

value fo r  a function given i n  algebraic form. 

Esch one of the optimizing techniques is programed i n  FORTRAN I1 

language for  IBM 709/7090 computers. These programs w i l l  be referred t o  as 

CODES from here on. 

This instructive exercise is carried out t o  acquire knowledge on the 

different operational characteristics of the computer codes, Familiarity 

with the program parameters of each one of the codes and understanding of 

their  internal stopping rules is required t o  introduce the necessary changes 

f o r  t h e m  t o  be used i n  connection with GROPE. GROPE is a Universal 

Adaptive Code for  Optimization developed by Professor Merrill M, Flood and 

the author 3y a t  the University of California, Berkeley. A Universal 

hitte, Bruno F., and W i l l i a m  R. Holst, "Two New Direct Minimum 
Search Procedures f o r  Functions of Several Variables," submitted for  pre- 
sentation at  the 1964 Spring Joint Computer Conference i n  Washington, 
D. C. (27 pages). 

2Beale, E, M. L., "On an Iterative Method for  Finding a h c a l  Minimum 
of a F'unction of More Than One Variable," Technical Report No, 25, Statis-  
t i c a l  Techniques Research Group, Princeton University, November 1958 
(44 pages). 

3Flood, Merrill M., and Alberto Leon, "A Universal Adaptive Code for  
Optimization (GROPE), 'I Space Sciences Laboratory, University of California, 
Internal Working Paper No. 19; August 1964 (100 M e S ) .  

zation (QIOPE), I' Space Sciences Laboratory, University of California, 
Internal Working Paper No. 11, April 1964. (26 pages), 

Leon, Alberto, "Steps Toward a Universal Adaptive Code for  Optimi- 4 
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Adaptive Code for Optimization, as we see it, is a general code which 

selects adaptively and sequentially among a group of several optimizing 

codes as each problem calculation progresses. 

It i s  also found of interest t o  compare the behavior of these tech- 

niques under identical conditions, tha t  is, with the same set of problems 

under the sate computing system (University of California, Berkeley, 

Executive System) . 
We do not attempt a detailed description of each technique and the 

Our obdective here is  t o  reader i s  referred t o  the proper references. 

present some results rather thsn extensive descriptions or analysis of 

the codes. 

The optimization ccdes we are dealing with are VARMINT, Ml3?", STEP, 

IOOK, BEST UlQIVAR, ITERATED PARTAN, C014TINUED P m h ,  and a version of the 

STEEPEST DESCENT method contained i n  the PARTAN code. 

The eight techniques can be classified in to  two broad categories: 

techniques based on conventional mathematical methods and techniques of the 

DIRECT S,E" type. 
4 

VARMIm, MIXFUN, STEP, ITERATED PAFfPfUV, CO-D PARTAN and STEEPEST 

DESCENT belong t o  the group of conventional mathematical methods. These 

techniques use i n  so= way or another the gradient of the function t o  be 

optimized and so require the analytical or numerical evaluation of the par- 

t i a l  derivatives of that  function. The gradient brings the idea of the 

direction of fastest improvement t d  a solution (either ascending or de- 

scending), obviously of great significance. It is  enough t o  say here that 

the gradient vector points in  the direction i n  which the function increases 

or decreases mat rapidly asd its length is  the rate  of increase or 
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decrease in that direction. 

BEST UNIVAR and LOCK are representatives of the DIRECT SEARCH type of 

optimizing procedures. Hook and Jeeves 5 have written that: "DIRECT SEARCH 

is Just sequential examination of trial solutions. Each trial solution is 

compared with the 'best' obtained up to that time, and there is a strategy 

for determining (as a function of earlier results) what the next trial 

solution win be. I' 

Next, we described briefly some of the relevant aspects of the eight 

codes we are using here. 

1. VARMRCl? (VARIABLES MEX'FUC IWIROD FOR MIMMIZATIOI9). .6,7,8 

Davidon s a y s :  "This is e method for determining nunerically local 

minima of differentiable functions of several variables. In the process of 

locating each minimum, a matrix which characterizes the behavior of the 

function about the minimum is determined. For a region in which the function 

depends quadratically on the variables, no more than N iterations are re- 

quired, where N is the number of variables. By suitable choice of starting 

values and without modification of the procedure, linear constraints can be 

imposed upon tpe variables. I' 

hooke, R. a& T. A. Jeeves, "Direct Search Solution of Numerical 
and Statistical Problems, I t  J. Assoc. Computing Mach., Vol. 8, 1961, 
212-229. 

'Davidon, C. William, "Variable Metric Method for Minimization," 
Argonne National Laboratory, "fL5990, November, 1959 (21 pages). 

'Stevens, D. F., "Instructions fo r  the User of VARMIIIT, Deck 
ZOM)ZOl3, Lawrence Radiation Laboratory, University of California, Berkeley, 
June 196l (18 pages). 

Fendl, F. A., and C. B. Chandler, "Numerical Optimization for Multi- 8 
dimensional Problems, 
Report No. 61 GL78, Mesch 1961 (47 pages). 

General Electric, General Ehgineering Laboratory, 
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Fend and Qesdler point out that ,  "Gradient methods basically analyze 

the changes in  slope (i .e*,  vector components of the gradient) correspond- 

ing t o  changes i n  the position of the trial point. 

the components of the slope t o  zero and thus obtain the location of the op- 

They attempt t o  drive 

t i m u m  point which is s o u a t .  

metric which specifies the change in  vector components of the gradient 

Davidon's method systematically varies the 

corresponding t o  changes i n  the location of the best point. In t h i s  re- 

spect it may be characterized as an adaptive procedure. It has a further 

advantage in  that  it uses an interpretative procedure once the optinrum 

point i s  bracketed." 

In the neighborhood of any one point the second derivatives of the 

function to be optimized, f(X)rc, specify a l inear mapping of changes i n  

position, g ,  onto changes i n  gradient - d v .  These changes are expressed 

fo r  a change i n  the i t h  derivative, for example, as 

where Hi' i s  the Heseian nrstrix. As we h a w ,  the optimum point will require 

vanishes and so the desired change in  Xi ( M e r  the assumption that q 
that the Hessian matrix is constant) will be 

In general Hi' does not remain fixed end here l ies  the important contribu- 

t ion of VARMINT: 

tion. 

correction of the Hessian matrix frum i terat ion t o  itera- 
9 !Chis idea was nentioned by Crockett and Chernoff while discussing 

* 
f denotes the function to be optimized. 

'Crockett, J. B., and H. Chernoff, "Cfradient Methods of Maxintzation," 
Pacific J. Of Math., 5 ,  1955, 33-50. 



5 
the differences between the Newton method and the gradient methods. 

The matrix H can be visualized as an error matrix and must be a 

positive definite matrix. A suggested initial value for H is 

2 Hii = (6Xi) 

Hi' = 0 for i f j 

where 8Xi is estimated error in Xi. 

H may be taken to be the identity matrix of order N. 

In the absence of a better estimate, 

We use the version of VARKIIVT available at the Lawrence Radiation 

Laboratory, the University of California, Berkeley (Deck ZOEOZOl3-~RTRAIv 

11). 

2. 

Humphrey says": 

KUWUN (A GWERAL b " I M I m G  ROUTINE): 

"Briefly, the program is a F O R I "  control routine 

and two subroutines which are designed to be used with a function sub- 

routine to be coded by the user. 

stepping procedure to either explore the 'space' of the independent vari- 

ables near the minimum or seek the actual set of variables at the minimum 

(at the option of the user). 

clusion of regions of the variable space from the allowed steps." 

This group of programs uses the ravine 

Provisions have been included to al low ex- 

The whole &ration of MIFJFu14 can be made clear by considering a hypo- 

thetical function f of two variables (x, y). 

shows the schematic representation of the optimization process. 

the initial point, the starting direction is taken as being along the grad- 

ient. A step is taken transverse to the line 0-1 from the point 1 to point 

2. 

at point 1 and 2, a minirmlm is predicted dong line 1-2 at point 3. 

Figure No. 1 in Appendix B 

At point 0, 

At point 2 the function is evaluated. Using the information available 

The 
\ 

%mphrey, W. E. , "A General Minimizing Routine-Hnf'un," Iawrence 
Radiation Laboratory, University of California, Berkeley, Internal 
Memorandum, September 1962 (gpages). 
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To function is  calculated at  point 3 t o  verify the minimum at that point. 

complete the cycle, a step i s  now taken along the l i ne  0-3 t o  a point 1' and 

the operation repeats as described at  point 1. 

We are indebted t o  Mr. W. E. H q h r e y  for  a copy of the FOR!CRAIV I1 

deck of his  program as w e l l  a6 fo r  f r u i t f u l  conversations concerning the 

use of MI". 

3. 

The procedure used by STEP is  designed t o  circumvent the existence of 

local  cols ( in  the surface which i s  generated by the function) which point 

i n  directions other than that of the minimum. 

subroutine uses two points along the spine of the co l  f o r  extrapolation (in 

the direction of descent) t o  a point from which is  sought the next spinal 

point. 

place. 

procedure is iterated u n t i l  either convergence occurs or the procedure 

exceeds the limit on the number of iterations. 

- STEP (AN EX2REHM I X > C m G  ALGORIZHM): 

When such cols exist ,  the 

If the minimum appears t o  be overshot, then an interpolation takes 

Following this, probing parameters are scaled down, and the whole 

Baer' has written that: "Roughly put, the algorithm consists of using 

alternatively two procedures: MPIORING and HOMING. Exploring consists of 

generating a sequence of restricted minima along the spine of the valley of 

the surface generated by the junction. 

between appropriate restricted minima when there is  an indication that the 

neighborhood of the required minirmlmhas been overshot. 

Homing consists of interpolation 

The efficiency of the procedure lies i n  the mode of generation of the 

Having obtained More than one of these, one generates res t r ic ted minima. 

the next by extrapolation (an appreciable distance) i n  the direction of the 

%r, Robert M., "Note on an Extremum Incating Algorithm," 
The Computer Journal, Vol. 5, No. 3. 
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vector difference of the preceding two, and then relying on the gradient. 

Except for  the first in t h i s  sequence of res t r ic ted minima, no great care 

need be taken i n  their  determination, inasmuch 8s they need not be exact." 

It is interesting t o  add what Baer means by restricted minimum. "If 

a, p sse taken t o  be fixed vectors, and i f  t is  a (real-valued) scaler, then 

the mlnlmum (with respect t o  t) of f(a + tf3) will be called a RESPRICTED 

MINIm. If 

We used a FORTRAPJ I1 version of STEP available through the I€M Share 

System. 

University of California, Berkeley, for helpful instructions t o  work prop- 

We are indebted t o  Dr. R. M. Baer of the Computing Center, 

e r ly  with his  code. 

4. STEZPESTDESCEllpT 

There are magy codes using i n  different ways the steepest descent (or 

ascent) ideas. 

dure available i n  PARTM (described in 8 subsequent section). 

We apply here a straightforward steepest descent proce- 

This version of the steepest descent method may be called optimum 

gradient because it locates the optimum in the gradient direction at  each 

point. The code works as follows:u (See Figure No. 2 i n  Appendix B.) 

( i )  Determine the direction of the gradient a t  the s tar t ing 

point Po. 

Locate the minimum on this  "steepest descent" path; designate. (ii) 

t h i s  point as P2. 

Determine the direction of the gradient at  Pg. 

b a t e  the minimum on this  "steepest descent" path. 

(iii) 

(iv) 

3' Designate this point as P 

G r f l e r ,  T. E,,  PART^, Minimization by Method of Pa ra l l e l  
Tangents If Iowa State University, April 1964, Internal hkmrandum 
(7 pages). 
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(v) Continue t h i s  procedure t o  Pn. 

"A simple algorithm using cubic interpolation i s  employed t o  estimate the 

minimum on any l ine  x + As, where x is  the origin of the line, s is the 

vector determining the direction, and A is the step-size parameter t o  be 

estimated. " 

It is interesting t o  notice that13 i n  principle the steepest descent 

method will not reach the optimum i n  a f i n i t e  nuriiber of steps because the 

steps shorten as the point i s  approached. However, the optimum can be 

approached as closely as desired, and if the s tar t ing point is not too near 

the major &s the neighborhood of the optimum is  attained rapidly. 

5. ITHZATEDPARTrn 

The general PARTAT? code includes the version of steepest descent de- 

scribed previously together with two variations of the PARALLEL TARGEWTS 

(PARTM) technique as presented by €3. V. Shah e t  al. 

PARTAIV look fo r  sane sor t  of acceleration of the steepest descent search. 

14 Both variations of -- 

This is an attempt t o  reduce to a f i n i t e  number the "infinite" number of 

steps required t o  reach the uptimum by means of the steepest descent pro- 

cedure. 

The authors of PARTAIV say that i n  the two algorithms one proceeds t o  

optima of f on successive straight lines. 

nately determined by positions of points already reached or by certain 

The path directions are a l ter-  

gradient directions. 

cern the "ideal" case, meaning by ideal: 

They also sey that all the theoretical results con- 

l%il.de, D. J., Opt-lrmrm SeekinR Methods. 

14Shah, B. V., R. J. M e r  and 0. Kempthorne, "Some Algorithms 

Prentice-Hall, Inc., 1964. 

for  Minimizing an Observable Amction," Journal Soc. Id. Appl. Math., 
Val. 12, NO. 1, W C h  1*, 74-92. 
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(1) f is quadratic; 

(2) f and i ts  gradient direction can be determined 

without e r ror  at any specified point; 

(3) On aqy given l i n e ,  the point at which f is an optinnmr 

can be determined without error. 

In the absence of error the procedure converges exactly t o  the Optimum 

i n  ( m ~  - 1) steps for a quadratic m c t i o n .  

ITWATED PAKpAlQ operates in  the following way (Figure No. 3, 

Appendix B): 

(i) Connect P1 asd P and locate the minimum on th i s  extended 

line. 

Won here on re-do the steps involved in the steepest 

descent process plus the previous one using P4 as the 

starting point. 

3 
Designate this point as P4. 

( i i )  

6.  C O L F P I ~ W E D P ~ M  

The so-called COWIDWED PAR!MV, aa was said before, i s  a variation of 

the previous one and it involves the following steps (Figure 4, Appendix 

B) :15 

( i )  Determine the direction of the gradient at P4; 

( A i )  Locate the minimum on this steepest descent path. 

Designate this  point as P 
5' 

(iii) Connect P2 and P alxl locate the minimum on this  line. 5 
Designate this  point as P6; 

( iv)  Repeat the previous steps unt i l  obtaining PN; "alwap 

taking a 'steepest descent' direction at P , j = 2, 3, ... 
and connecting P 

P m m  acceleration step. " 

2J 
ssd P2j+l, j = 2, 3, ... for the 2j-2 

l 5 h e  footnote 1.2, page 7. 



10 

We are indebted t o  Dr. 0. Kempthorne and Mr. Thomas E. Doerfler both 

from the Sta t i s t ica l  Laboratory of Iowa State University for a copy of the 

11 deck of PARTAN an3 its operating instructions. 

7. 

LOOX is f 'ully described i n  the reference i n  footnote 5 on page 3. 
16 

It 

be described briefly as follows: 

"1. Initialization. A start ing point for the search is  

calculated17 and stored. 

"2. Exploratory seesch. Various  moves are made to determine 

a desirable direction for the search. Any m e  which is  

better than the reference value is kept and becormes the 

new reference value. 

exploratory search is not immediately preceded by a pattern 

On the initial entry or whenever the 

move, the reference value i s  the last base point. Follow- 

ing a pattern m e ,  the reference is the value at  the end 

of the pattern move. 

Success? "3. If the best value found for the function during 

the exploratory search is  better than i t s  value at the 

last base point, a new base point is established. Other- 

wiae, the last base point is restored. 

"4. Save base point and make Pattern Move. The latest 

functional value replaces the previous value and the 

comespanding values of the independent variables do like- 

wise. This establishes a new base point. The pattern 

16wooa, C. F., "Recent Developpments in  'Direct Search' Techniques," 

'70, given as kta. 

Westinghouse Research Report 62-159-522-Rl. 



5.  I t  

"6. 

"7 . 

move is generated by maving each independent variable 

awe;y fram the latest base point value by an amnunt 

equal t o  the difference between the old and new base 

point values. A pattern move is  alxays followed im- 

mediately by an exploratory search. 

&store last Base Point. 

are s e t  at the values corresponding t o  the last base 

point. 

the i n i t i a l  reference for  tes t ing the individual mDyes of 

the exploratory search. 

Bad Pattern Move Just been W e .  

search preceding the failure was itself preceded by a 

pattern m e ,  perform another exploratory search. 

Otherwise, check for search ccwlpletion. 

Can s k p  s ize  be reduced? 

independent variables are at their minima, the search 

is complete. Otherwise, reduce step size and perform 

another exploratory search. 'I 

The independent variables 

The Amctional value for  the s8me point becarnee 

If the exploratory 

If the step sizes for  all the 

As we see the final termination of the search is  made when the step 

size is suf'f'iciently slpall t o  ensure that the optimum has been closely 

approximated. 

limit imposed by the means of computation. 

two conditions occur at the sane t i m e ,  namely (1) the step size is at min- 

imum snd (2) the farward ard reverse naves of all independent variables 

fa i l  following a base point test failure. 

I n  any case, the step size must be kept abwe a practical  

The search is  stopped when 

As Eooke and Jeeves say, "In practice, pattern search has proved par- 

t icular ly  successful in  locating minima on hyper surfaces which contain 
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'sharp valleys'. On such surfaces classical  techniques behave badly and 

can only be induced t o  approach the minimum slowly." 

We are indebted t o  Mr. C. F. Wood for  a copy of the deck of LOCK'S 

original FORTRAN 11 code. 

8. BESTZRJIVAR 

This Direct Search Code Me6 one of the many possible strategies that 

might be employed t o  determine subsequent trials as a function of previous 

results. 

BEST UNIVAR is fully described together with numerical examples i n  

two papers written jointly by Professor Merrill M. plood and the author. 18,19 

B;EsT UNIVAR is  available in  I Q M  I1 fo r  IBM 709/7090 casnputers uperated 

either under the University of Michigan or the University of California 

Escecutive Systems. 

available now i n  RXTWV IV for  I M  7090/7094 computers processed by the 

3W" IV c q i l e r ,  and 7090/7094 IBJOB Processor Component. 

Changes were Introduced recently and the code is also 

BEST UNIVAR may be described very briefly as follows: 

1. Init ialization. The uptimization process is  ini t ia ted 

by picking up, as the s tar t ing point, an arbitrary point 

inside the operating space. 

2. Order of analysis. Once the function has been evaluated 

at  the s tar t ing point, the independent variables t o  be 

changed are changed i n  an order selected i n i t i a l l y  by the 

experimenter. 

%load, MerriU. M. and Alberto Leon, "A Direct Search Code for the 
Estimation of Parameters in  Stochastic Iearning Models," Preprint log, 
Mental Heath  Research Insti tute,  The University of Michigan, May 1963 
(63 pages). 

lgFlood, Merrill M. and Albert0 Leon, "A Generalized Direct Search 
Code for  Optimization," Preprint 129, Mental Health Research Inst i tute ,  
The University of Michigan, June 1964 (64 pages). 



3. One-at-a-time search. After deciding upon the order i n  

which t o  search the one-at-a-time search is init iated.  

Iet Xi be the first variable under study; t h i s  variable 

i s  incremented by an w u n t A  

ables at the i r  i n i t i a l  values. 

holding the other vari- 

If the functional value at  
i’ 

th i s  point is  better than the one at  the preceding point 

there i s  sone reason for  trying further in  the s a m  direc- 

tion. 

(where hi > l), and if a better functional. value (comparing 

against the immediately previous one) is obtained, a step 

of length hiAi is used next. 

direction by parers of Xi u n t i l  no further improvement is  

obtained. Assume that step A;+’Ai was the first unsuc- 

cessful one; i n  th i s  case the preceding base point is kept, 

namely the one obtained by step AiAi asmd a new sequence i s  

started from this  point with i n i t i a l  step size equal t o  Ai 

foUxrwfng the stme scheme as before. 

positive direction does not bring a better point, then 

A larger step size i s  now used, taken equal t o  hiAi 

2 We continue i n  the same 

h 

If a step of Ai in  the 

a step of length Ai i n  the negative direction is  tried; 

if this  happens t o  be a successful step, the hiAi i s  t r ied  

in the same negative direction continuing i n  the same 

fashion as was done i n  the positive direction. Finally, 

we reach a point where no improvement is obtained by moving 

vaxiable Xi either Ai or -Ai; t h i s  point i s  considered 

t o  be the best temporarily for  variable Xi. 

point i n  the 

the l is t  i s  ready t o  be analyzed. 

After the best 

Xi direction is  found the second variable in 

The process is repeated 
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unt i l  the t o t a l  number of variables t o  be analyzed has been 

studied and a point X' presenting the best functional value! 

of the round is  reached. 

Pattern Move. 

3 i s  better than the i n i t i a l  one f then the pattern m e  is 

tried.  

an amount proportional t o  the change experienced for  the 

coordinates i n  going from f t o  f ' .  

be greater than one. 

move, happens t o  be better than f', a new step of length 

(hP)(AP) is taken i n  the same direction. The role  of AP 

here is identical t o  tha t  of h i n  the one-at-a-tim portion 

of the process. The process here folluws the same scheme 

explained in phase 3. As before, when a point is reached 

where no improvement is obtained by moving the vector either 

(AP) or -(oP), this point is considered the best of this  

series of pattern moves. 

4. If the Arnctional value f '  at the end of step 

The coordinates of the f' point are incremented by 

This rate of change w i l l  

If point f t r ,  a f t e r  the in i t i a l  pattern 

If the point obtained a f t e r  a series of pattern moves 

is  bet ter  thaa the point at  the beginning of the series 

(i.e., at  the end of the one-at-a-time round), a new round 

of the one-variable-at-a-time phase, as it was previously 

described, is attempted, and the process is  kept going un t i l  

no better points are found. 

happens t o  be 8 fa i lure ,  a one-at-a-time round will be tried, 

resulting either i n  the f ina l  point, i.e., the opt imum 

searched (as far as the technique can t e l l ) ,  or in the con- 

tinuation of the optimization calculation. 

If the pattern m e  phase 



It is easily seen Framthe above comments that the end 

point of the process w i l l  always be the s tar t ing point of a 

one-variable-at-a-time phase. 

The techniques described previously are tested with a group of f ive two- 

variable unconstrained functions. 

Three of the problems Bse by Witte and Holetm; we keep the names 

given t o  these functions in the original paper so they will be called: 

SHAIXIW, STRAIT, and CLTBE. 

t i m e  by H. H. Rosenbrocka and also included by W i t t e  aad Holat who called 

it ROSIE. 

The fourth problem was presented for  the first 

Our fifth problem is one presented and analyzed by E. M. L. 

and by et  alO23; we c~ th i s  one REALE. -- 
The following are the algebraic expressions of our set of problems 

(to be minimized): 
ROSIE = 100 ( Y - x ~ ) ~  + (1-x) 2 

S i i m  = (y-x2)2 + (1-x) 2 

STRAIT = (y-x2)2 + lm(1-x)2 

CURE = 100 (y-x3)2 + (1-x)2 

20See reference 1, p. 1. 

%osenbrock, H. H., "An Automatic Method for Finding the Greatest 

%e reference 2, p. 1. 

2 3 ~ e  reference 14, p. 8. 

or Least Value of a lbnction," Camputer J., Vol. 3, October 1960, 175-184. 
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2 ROSIE has a minhum f - 0 a t  (1, l), with a steep valley slang y = x , 

and a side valley along the negative y - axis. 
2 SIAIIIW presenta a minimum of f = o at (1, 1 )  with valleys along y = x 

and x = 1. 

valley compared with the steep valley of ROSIE. ,,24 

"SHALQW is similas t o  the function ROSIE but has a shallow 

STRAIT has its minimum of f = 0 a t  (1, 1) with a steep valley along 

x = 1. 

ClTHE preaents a minimum f = 0 at (1, 1 )  with a steep valley along 
3 

BMLE has a minimum of f = 0 at  (3, 0.5) with a narrow curving valley 

y = x  . 

approaching the l ine y = 1. 

Esch one of the problems is solved beginning the optimizatim calcula- 

t ion at five different s tar t ing points so as t o  expose each procedure t o  

a variety of topographical conditions. 

a d  CUBE the s a n ~  i n i t i a l  points of W i t t e  and Holst. 

f ive of the s tar t ing values used by Shah e t  al., i n  fact the ones we f e e l  

t o  be the most d i f f icu l t  ones. 

We use in ROSIE, SEALOW, STRAIT 

We pick up for  BEALE 

The results are recorded in the Tables of Appendix A. Each table 

contains, for  a particular problem, the i n i t i a l  values together with the 

following information pertaining t o  each one of the optimizing codes: 

a. Final Values. The optianmr Functional value together with 

the corresponding vector. 

b. Amber of times the evaluating function is called. I n  some 

of the codes this subroutine is called t o  evaluate the derivatives at  8- 

point without functional evaluation at all; however, these two c a l l s  

See reference 1, page 1. 24 
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are not separated and both are recorded as Arnctional evaluations. 

C. Execution time i n  seconds. Internal clock readings are 

taken both at the beginning and ead of each one of the problem by means 

of a library subroutine of the Berkeley System. 

use on the BC 7090 equipped w i t h  the Delco clock on channel R. 

This subroutine is for  

d. Number  of cycles. A cycle has a different meaning i n  each 

one of the codes. 

techniques we are dealing with: 

BESI UNIVAR. A complete cycle includes the one-variable-at-a- 

We describe very br ief ly  the definition of cycle fo r  the 

time phase and the series of pattern moves following the previous one. 

IXXIK. A cycle is  defined here as the exploratory search plus 

the pattern move. 

VARMlffp. A cycle includes establishing a direction t o  search, 

determining i f  the local minimum has been sufficiently w e l l  located and the 

modification of the H msfrix on the bases of previous infarmation. 

l4I". A cycle here is as f o l l m :  determination of the 

gradient direction, step transverse t o  the gradient direction at the end 

of the previous step, prediction and verification of a minimum, step i n  

the direction of the vector i n i t i a l  point - ac tua l  minimum. 

STEP. Each i te ra t ion  involves the necessary operations t o  

locate a new restricted x i n 4 .  

ITERATED PARTAN. me cycle includes the operations ( i )  and 

( i i )  explained i n  the description of this optimizing code. 

CCXWIWED PARTAN. A cycle here is understood as one including 

steps ( i ) ,  ( i i ) ,  ( i i i ) ,  and (iv) explained i n  the description of th ie  

optimizing procedure. ~ 



18 

STEEPESP DESCRIT. A cycle is defined here a8 the phase of the 

optimization process including steps (i), (ii), ( i i i ) ,  and ( iv)  of the 

code's description. 

RPZARK 

The following general conclusions seem t o  be appropriate in view of 

the results slrnannrized i n  Appendix A. 

VARMIRI! presents the most consistent behavior among the group of 

techniques based on conventional mathematical methods. 

are reported by M. J. Box25 working with a different group of techniques on 

a different set of problems. 

t o  various interpretations, t h e  conclueion reached is  that Davidon's method 

Similar results 

Box says that "Whilst these results are open 

is  a 

of2 

with 

been 

mre eff ic ient  optimizer than Rosenbrock's method, perhaps by a factor 

or  3."26 Box's results together with our results are in  accordrtnce 

the following remarks by Fletcher and "Dsvidon's work has 

little publicized, but in our opinion constitutes a considerable ad- 

vance Over current alternatives." 

reference that their  results with a variety of numrical tests "confirm 

that the method is probably the most parerful general procedure for  finding 

a local minimum which is known at the  present time." 

Fletcher and Poxell add i n  the stme 

SPEP shows good results with functions ROSIE, SEAIOU, STRAIT and CUBE. 

It does not work too well w i t h  BEPIIE, specially approaching the narrow 

25Box, J. M., "Lecture Notes on Direct Search Methods of Optimization," 
fmperial Chemical Industries, LM., Central Instrunrental Laboratory, 
England, October 1963 (13 pages). 

2 h e  same as ours. 

27Eletcher, R., and M. J. D. Powell, "A Rapidly Convergent Descent 
~ e t h o d  for Minimization," The Ccayputer J., VoL 6, No. 2, 1963, 163-168. 
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curving ltval.leyll from the almost flat region at the luwer right comer 

of the space. 

BWT UX'?IVAR of the direct search type of techniques eaibite the most 

consistent behavior of its group. 

presents better numerical values when it approaches the true optimum; 

however, its work on CUBE and BEALE is quite unsatisfactory. 

ILx)Ic requires lower computing time and 

One of the essential chazacteristics of direct search procedures for 

optimization is that they do not require derivatives of the objective 

function. 

zation problems involving functions with many variables. Furthermore, 

algebraic expressiona for the optimization function are not necessary. 

All that is required is a way of finding functional values but without 

having the function available in algebraic form at all. 

ing difficult functions or having no algebraic expressions for the ob- 

jective function, the application of VARMIlQT or similar procedures would 

be impossible. 

lhese techniques are then adequate to treat difficult optimi- 

In cases involv- 

It is interesting to note the similarities in behavior between STEP 

Further analysis of these results w i l l  snd IlxlR while aptimlzing REALE. 

be attempted in the near future. 

CUM praves to be the most difficult function for a l l  the techniques. 

It takes the longest computing time to reach its true solution if compared 

against the other functions. MIXFUN, ITERATED PAFfCAN, STEEPEST DESCERT 

and IMIM do not even approach the optimum of CUBE in most of the cases. 

Same experiences w i t h  the same group of codes increasing the dimen- 

sionality of the function to be optimized and also introducing constraints 

will be reported elsewhere. 
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